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Slow crack growth analysis of brittle materials
with finite thickness subjected to constant
stress-rate flexural loading
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A two-dimensional, numerical analysis of slow crack growth (SCG) was performed for
brittle materials with finite thickness subjected to constant stress-rate ("dynamic fatigue”)
loading in flexure. The numerical solution showed that the conventional, simple,
one-dimensional analytical solution can be used with a maximum error of about 5% in
determining the SCG parameters of a brittle material with the conditions of a normalized
thickness (a ratio of specimen thickness to initial crack size) T > 3.3 and of a SCG parameter
n>10. The change in crack shape from semicircular to elliptical configurations was
significant particularly at both low stress rate and low T, attributed to predominant
difference in stress intensity factor along the crack front. The numerical solution of SCG
parameters was supported within the experimental range by the data obtained from
constant stress-rate flexural testing for soda-lime glass microslides at ambient
temperature. © 17999 Kluwer Academic Publishers

1. Introduction glass microslides1 mm thick) or thin ceramic plates.
Constant stress-rate (also called “dynamic fatigue”)This is especially true for a material exhibiting a high
testing has been utilized for several decades to quantif$CG susceptibility (i.e., with a low SCG parameter of
the slow crack growth behavior of glass and ceramion < 20): The critical crack size at high stress rates of the
materials at both ambient and elevated temperaturesrder of 13 to 10> MPa/s may be small with respect to
[1-7]. The merit of constant stress-rate testing ovethe specimen thickness; whereas, the critical crack size
other methods lies in its simplicity: Strengths are de-at low stress rates of the order of 0to 102 MPa/s
termined in a routine manner at four to five stress ratesvould be more comparable to the specimen thickness,
by applying constant crosshead speeds (displacemeritue to enhanced slow crack growth.
control) or constant loading rates (load-control). The Furthermore, at these low stress rates particularly
slow crack growth (SCG) parameters required for lifein flexure the stress intensity factor at the crack sur-
prediction/reliability are simply calculated from a rela- face would be greater than that at the crack depth (due
tionship between failure strength and stress rate. Beto a stress gradient through the thickness), resulting
cause of its advantages, constant stress-rate flexurdl a faster crack growth in the surface than in the
testing has been developed as an ASTM test standadepth direction. As a result, a change in crack shape
(C 1368) to determine SCG parameters of advancethto an elliptical crack configuration is inevitable. The
ceramics at ambient temperature [8]. solution in this case requires a two-dimensional, nu-
The slow crack growth analysis of brittle materi- merical slow-crack growth approach in which each
als containing surface cracks under constant stress-raigdividual crack velocity is to be specified at each
loading condition has been made for the natural flawindividual crack front, coupled with the correspond-
system [1] as well as the indentation-induced flaw sysing time-varying stress intensity factor. Such a two-
tems [9-11]. In both cases, the typical assumption irdimensional analysis, however, has not been yet applied
the analyses was that critical crack sizes at failure, afteto finite, thin glass or ceramic specimens subjected to
subsequent slow crack growth, are much smaller thanonstant stress-rate condition. Only conventional, one-
specimen size, considering the specimen as an infinitdimensional, infinite-body analytical solution has been
body as compared to crack sizes. In reality, however, theommonly utilized [1-11].
crack sizes cannot be always small relative to the speci- The main objective of this work was to investigate an-
men sizes, particularly for finite, thin specimens such asilytically (numerically) how finite specimen thickness
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relative to crack size has an effect on the determina-
tion of SCG parameters in constant stress-rate loading
in flexure. A two-dimensional numerical analysis was
performed to determine both SCG parameters and crack
shape. Four different specimen thicknesses with re-
spect to initial crack sizes were used in the analysis. !
Limited constant stress-rate (“dynamic fatigue”) test- I
ing were conducted in flexure using thin sodalime glass !
microslides with four different sizes of surface cracks :
|
[
|

= Q)

in order to compare the numerical solution with exper-
imental data.

I
2. Analysis ’ :
In many cases, slow crack growth of glass and ceram- ]
ics under mode | loading above the fatigue limit is de- : 2c
|
|
|

scribed by the following empirical power-law relation
[12]:

da Ki n e
=5 = Ake) @ /

wherew, a, t are crack velocity, crack size, and time, 2b
respectively.A and n are the material/environment-
dependent SCG parameteis, is the mode | stress l
o
@)

intensity factor (SIF), an&c is the critical stress in-
tensity factor or fracture toughness of the material, sub-
jected to mode | loading. Under constant stress-rate
(“dynamic fatigue”) loading using either constant dis-
placement rate or constant loading rate, the correspond

c
ing failure strengthds) based on an infinite-body as- o s

sumption can be derived as a function of stress eafe ( -

as follows [1]: ® Vs
o7 = [B(n n l)anr;—z]l/(nﬂ)(}l/(nvtl) 2) a
whereB = 2KZ / AQ?(n — 2) with Q being a crack ge- B

ometry factor in the expression &f, = Qo ./a with
o being a remote applied stress, atd is the inert
strength. By taking the logarithm both sides of Equa- Vv
tion 2 yields (b)

| _ | . | D 3 Figure 1 Crack geometry: (a) surface crack configuration in a finite
0gor = n+1 0go + 109 ( ) specimen; (b) a surface crack during slow crack growth representing
crack velocities at the surface (at ‘'S’) and at the depth (at ‘B’).

where logD =[1/(n+ 1)]log[B(n+ 1)o"~2]. The
SCG parameten can be obtained from the slope of
Equation 3 by using a linear regression analysis ofor 0=<a/w <1.0, 0<a/c=<1.0, ¢/b<0.5 and O<
|Og of Versus |Og)— The parameteAiS determined from ¢ <m.o is the remote outer-fiber flexural stress. The
the intercept D) together with appropriate constants. functionsH, Q andF are complex in expression, and
Equation 2 is the commonly utilized, one-dimensional@re dependent on crack geometry and specimen dimen-
SCG (“dynamic fatigue”) solution for the “infinite” Sions (see Appendix). A new crack geometry facror,
body where stress intensity factor along the crack frontvas used for simplicity as follows:
is uniform at a given time during crack growth.

The stress-intensity factor solution for a surface crack Y = HF )
in a plate with finite thickness (see Fig. 1) has been de- — J/Q
veloped by Newman and Raju [13], and has beenwidely

used to determine fracture toughness of materials angihe slow crack velocity for a given material/ environ-
fatigue crack growth for metallic materials. The result- ment condition depends on stress intensity factor as

ing stress intensity factor for flexure load is shown in Equation 1. For an infinite body the crack
velocity of a semicircular surface crack is all the same
K| = Ha\/ﬁF <E ac ¢> ) along the crack front. However, as the crack length be-
Q \w'c'b comes comparable to the specimen thickness, the stress
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intensity factor is no longer identical along the crackstress, normalized crack sizes (at points ‘S’ and ‘B’),
front: The maximum and minimum stress intensity fac-and normalized stress rate. Using these variables, the
tors occur, respectively, at the surface and at the deptimormalized stress intensity factors and the normalized
due to the stress gradient through the specimen thickerack velocities at both points yield

ness [13]. This gives rise to a change in crack velocity

at the crack front, resulting in crack-shape change (into d& _ [K*]”

an ellipse) during slow crack growth. Based on Equa- dJ B

tion 1, the individual crack velocities both at the surface dCs N

(at ‘S’) and the depth (at ‘B’) of a crack (see Fig. 1b) File [Ké]

can be expressed (20)

KE — Y(p=m/2). *3cL2
dc Kis n B — Y o B
ST A(K_uc> Y(4=0)
(6) K= ———6*3C3°

da Kis : Ym
e =g = M Ke
IC The solutions of these equations including two simul-
- taneous differential equations, in terms of normalized
wherevs andvg are the crack velocities at the surface . . ; :
variables such as strength, failure time and crack sizes,

g?lg’sa ;:r':ﬁed:&tfr;cfzgicaﬂvtﬂg’da::q%ha?ﬂg gg(r;e tgfamé'\-'ere obtained by using the fourth-order Runge-Kutta
. pth. 1 P method for a givem and stress rates(*). The two-
tersn andA can be assumed invariant since the parame-,. . . .
. . . imensional analysis was performed for the crack to si-

ters are the constants for a given matenal/envwonmenq

system. From Equations 4 and 5, the Correspondinmultaneously grow both in the surface and in the depth

stress intensity factors at the surface and the dept irections, coupled at any instant of time V\."t.h. the ge-
ometry factolY . The solution procedure was initiated to

become determine the normalized strength as a function of nor-
Kis=Y(¢ =0)o/ma malized stress rate for the selected valuas-6/5-160.
(7)  Arange of normalized stress rates frorh= 1.0 x 10
T — to 1.0 x 10~ 7 was used. The initial condition w& =
'8 (¢ ) ovT Cg =1, that is, the crack starts growing from a semi-

circular crack configurationcfa=1). The instability
The critical stress intensity factor for a semicircular conditions wereK% =1 or K =1, whichever occurs
crack can be expressed using Equations 4 and 5 witfirst, and & ¢/dCs > 0 or dK 3 /dCg > 0. A set of four-

¢ =0 (where a maximum SIF occurs) as follows: different, normalized specimen thicknesses was used
in the analysisT =2, 3.3, 10 ando, whereT is the
Kic = Ym(¢ = 0)om/mam (8)  normalized thickness in which the specimen thickness

(w) was normalized with respect to the initial crack size

whereYy, anday, are, respectively, crack geometry fac- (&) as follows:
tor and crack depth in the inert condition whereby no
slow crack growth occurs. Hencey, corresponds to T=2 (11)
the initial crack size. g

The analytical solution of Equations 6 and 7 in terms I .
of failure strength as a function of stress rate is not feas,i-T.he program can b(_a readlly mcorporated into the one-
ble because of two-dimensional crack growth, couple(f'm.enSIonal analy5|s'once Itis setlo= vs. The fol-
with a great complexity of the time-varying stress inten- owing are the numerical results regarding strength vs.
sity factors associated with (see Appendix) as a crack stress rate, SCG parameters, and crack shape.
grows. A two-dimensional solution has to be made via
numerical methods. To minimize the number of param-

eters to be specified (suchAsan, a, ¢, om, o, Kic and 2.1. Strength versus stress rate _
A summary of the numerical solution of normalized

t, etc.), itis convenient to utilize a normalized scheme, " X i
as used previously in the one-dimensional, slow-crack"€ngth (10gr’) as a function of normalized stress rate
loga*) inflexure is shown in Fig. 2. The figure is for a

growth analysis of indentation-induced flaws [9, 11]. i ) . )
The normalized variables for the two-dimensional anal-S€t Of four different, normalized specimen thicknesses
ysis were used as follows: of T =2, 3.3, 10 ando. Belows* = 1071, there exists

alinear relationship between leg and logo™ for each

KE — Kis . _ Kis. J— At' _ 0. n. Aboves* = 10%, the strength convergesdg = 1 in
ST Kl BT K “an 7T o which the inert strength is defined. It was found that
©) for the infinite body T = o0) the solution exhibited
Ce — c. Co — a., oF — G_* no difference between the conventional, 1-D analysis
S~ am’ B = am’ 0 J (Equation 3) and the numerical two-dimensional anal-

ysis, sinceK;s=K;g with a/c=1 during the whole
whereK{, K, J, 0%, Cs, Cg ando* are, respectively, period of slow crack growth.
normalized stress intensity factors (at points ‘S’ and For n > 20, the curves among the foli's have no
‘B’ in Fig. 1b), normalized time, normalized applied significant difference in slope and intercept. However,
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v 2 ] ] | | ‘ | ‘ TABLE | The deviations (A, andA ) in slow crack growth parame-
o CONSTANT STRESS—RATE TEST tersn’ and|
) flexure
E n True slow crack growth parameter
5 : Normalized
5 0.9 specimen thicknes3, 5 10 20 40 80 160
= 08¢
e 07y (@) An
A 0.6 ¢ 2 054 014 004 002 001 0.01
= 057 3.3 041 009 003 002 001 —
E 0.4 10 022 005 002 001 — —
< 00 - - = = = =
= 03 (b) A
S 2 -0.12 -0.02 —0.02 —0.01 — —
Z g2 3.3 -010 -001 —001 — — —
1078071070 %0 0107407 10% 10" 102 10 -009 -001 —  —  — —
00 - -
NORMALIZED STRESS RATE, o*
Figure 2 Results ofthe_numerical solutic_ms ofnormaliz_ed strength) ( 1000 v e g
as a function of normalized stress rad€ ) in flexure for different levels - F Flexure -7
of normalized specimen thicknesE)( © r 1
m -
e 1
£
for n < 10, representing a condition of high SCG sus- & 100 F E
ceptibility, the deviation from the curve foF = oo = : 1
is amplified with both decreasing specimen thickness ., -
T and decreasing. This is ascribed to the acceler- 2 1
ated crack growth in which the crack degtbecomes e 10 & -
quickly comparable to the specimen thickness. The 2 : O T=Inf. ]
lower limit of o*, oy, below which no solution ex- & r ® T=10 ]
ists, corresponds to the condition@f ~ T (ora~ w) B i v T=3.3 |
where a part-through crack configuration forms. The < o I T=2.0
v:_:llues ofo", crltlcal_for nf}O, casn be foung from : 10 100 1000
Fig. 1. Forn=10, ¢~ 10", 107>, and 107, re-
spectively, forT =2, 3.3 and 10; whereas, for=>5, TRUE SCG PARAMETER n
o ~1072,10°3, and 10“. Therefore, the common use @)
of at least four stress-rates, usually one decade apart,
with a condition ofs* <101 is limited for the cases 10" T
of n<5andT <3.3. Flexure
10° -
2.2. Slow crack growth parameters — 10 'L -
As seen in Fig. 2, below* = 1071, there exists a lin- £
ear relationship between log* and logo™*. Hence, B 972 L |
analogous to the conventional infinite-body relation, &
Equation 3, a relationship can be expressed as follows £ _3
[9, 11]: z 10 "1 .
1 O T=Inf.
. -4 | e T=10 _
logoi" = ——logo™ + log | (12) 10 v T=3.3
n+1 v T=2.0
wheren'’ is the * rent’ rameter ahds th 10
eren’ is the ‘apparent’ SCG parameter ahds the 1 10 100 1000

intercept. The ‘apparent’ SCG parametéwas deter-
mined from the slope of the data in Fig. 2 by a linear
regression analysis of log* versus logo*, based on
Equation 12. The resulting plot of the ‘apparent’ SCG
parameten’ as a function ofi is shown in Fig. 3a. The
variation inn” from n was greater fon <10 and is in-
creased with both decreasiiigand decreasing. The
variation inn’ was defined aa, = (n" —n)/n. A sum-

TRUE SCG PARAMETER n
(b)

Figure 3 Results of the numerical solutions of slow crack growth pa-
rameters as a function ofin flexure for different levels of normalized
specimen thicknesd(): (a) forn” and (b) for logl .

mary of A, as a function oh for differentT'’s is shown A summary of the intercept based on the data in
in Table I. Forn=5, A, =54, 41 and 22%, respec- Fig. 2 and Equation 12 is shown in Fig. 3b and Table I.
tively, for T=2, 3.3 and 10. Fon=10, A,=14,9 The overall variation il from the solution foiT = oo,
and 5%, respectively, for =2,3.3and 10. Fan >20, A, =(lt=- — )/, was less insignificant, compared
the variation im’ was negligibly small withamaximum to A,. Forn=5, the variation isA| =12, 10 and 9%
value of 4%, occurring fol = 2. (all negative), respectively, for =2, 3.3 and 10. For
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n> 10, the variation was negligible for afl’s with a 1.2

T T T T T ! T I
maximum value of-2%. | T=10(FLEXURE); 6*=1x10"" _
From the results shown in Fig. 3 and Table |, it is 1.0 _
evident that in order to maintain a maximum variation .& i Wn=20
of less than 10% in botin and | with at least four ® 0.8 |- n=10 / N
stress rates one must use the conditions ®f10 and =) ' i Feilure
T > 3.3. For a maximum variation of 5%, the condi- > P
tions ofn > 10 andT > 10 must be fulfilled. In case of /& 0.6 - Failure T
n> 20, one can use thin specimens with=2.0 (the 5 i
initial crack size is 50% of the specimen thickness) with & 0.4 - N
an error of about 4%. Since most glasses at ambien% r T
temperature and many advanced ceramics at elevate 0.2 |- .
temperatures exhibit > 20, the specimens fabricated L
from those materials containing initial crack sizes of 0.0 NN IS N S N S S E—
50% of the specimen thickness can be used to deter 61 2 3 4 5 6 7 8 9 10
mine the S(_:G parameters Wi_th_a_n error of 4% u_sing NORMALIZED TIME, J (xlOz)
the conventional, simple (1-D infinite-body) analytical
solution (Equation 2 or 3). @
1.2 T T T T_6 T
| T=10 (FLEXURE); ¢*=1x10 |
2.3. Crack shapes
. . . " 1.0 .
Typical examples of the numerical solution of criti- o
cal crack size and its shape at failure are depicted irs I \\ -2 |
Fig. 4. The figure is for the cases& 10 and 20 with 08 = 7]
T =10. Both the aspect ratim/c and the crack-depth E I n=10 1
to specimen-thickness ratigw were plotted as a func- = 0.6 .
tion of stress rate. The change in crack shape from theS - P
initial semicircle @/c=1.0) to ellipse is insignificant = 0.4 |- Failure  —|
at higher stress rates. However, the change is signifi-% L |
cant at lower stress rates with decreagingttributed = 0.2 L i

to enhanced slow crack growth. The corresponding

ratio increases with both decreasing stressrate and de ~, | Failuré | |
creasingn. The crack depth at failure, for example, e 1 2 3 4 5 6
reaches about 80% of the specimen thickness for the 5

case of extended slow crack growth, which isrfet 10 NORMALIZED TIME, J (x10°)
ato*=1x1075, (b)

A more detailed description of the accompanying_. . .
k-sh h . | K ths sh Figure 5 Results of the numerical solutions of crack growth (aspect
crack-shape ¢ an@kmrlng slow crack growtis shown ratio = a/c) as a function of normalized test tim@)(in flexure with

in Fig. _5, where the_ aSP?Ct ratia/(c) was plotted as  a normalized specimen thickness = 10 forn=10 and 20: (a) For
afunction of normalizedtime)) forthecasesaf =10  6*=1x1073; (b) Foro* =1x 1076

and 20 withT =10. Two stress rates;* =1 x 1073
and 1x 1075, were considered in the analysis. At
1x 1073, the initial semicircular crack grows to a n=20; whereas, the crack grows considerably ellip-
slightly elliptical configuration witha/c= 0.85 for tical to a value ofa/c=0.67 for n=10. The trend
for 1 x 10~%is similar; however, the ellipticity is much
2 —— 42 more magnified, compared to that fox110-3 because

a of extended slow crack growth. The resulting elliptic-
10 10 a2 ity at failure for 1x 10~® amounts toa/c=0.53 and
g % & 0.15, respectively, fon=20 and 10. It is noted from
® o8t 408 B & Fig. 5 that the initial crack grows very little during most
g L =3 of testing time, but grows instantaneously close to the
5 o6 ~0.6 : i failure time at which failure strength is defined. A long
& - =0 incubationtime of an initial crack is a unique aspect
@ 04 104 5% for slow crack growth behavior of most brittle materi-
2 - ® 5 als subjected to constant stress-rate testing [7].
02 102 55 For a given material/environment condition, the
i ¢ z change in shape of an initial semicircular crack during
0.0 ——t——l—l——l—l——————— 00 slow crack growth is dependent on stress intensity factor
10°7107TTOTRI0 IO TR0 A0T 10 at its crack front. In flexure, the stress gradient through
NORMALIZED STRESS RATE, o* specimen thickness is significant so that the stress in-

Figure 4 Results of the numerical solutions of crack configuratians ( tensity factor is smaller at the depth than at the surface
anda/w) at failure as a function of stress rate in flexureiee 10and ~ When th(? crack _Iength due .tO SCG Increases toward
20 with a normalized specimen thicknessTo& 10. the specimen thickness. This results in a faster crack
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growth in the surface than in the depth direction, givingnot possible in this experiment to achieve a normalized

rise to the crack with an elliptical crack configuration. specimen thickness of less than 5 (€Igs 5), although

The ellipticity is more enhanced as the crack growsthe numerical analysis was covered upite: 2.

close to the bottom of the specimen (see Figs 4 and 5),

with both decreasing stress rate and decreasinig

is important to note that despite a significant changet. Results and discusssion

in crack shape during slow crack growth, the SCG paA summary of the constant stress-rate flexural testing

rameters determined by the 2-D, finite-body numericaresults for the soda-lime glass microslides with four

solution do not noticeably differ from those by the sim- differentT’s is shown in Fig. 6. The decrease in failure

ple, 1-D, infinite-body analytical solution (Equation 3) strength with decreasing stress rate, which represents

for most glass and advanced ceramits (20) provided  the susceptibility to slow crack growth, was evident for

thatT > 2, as aforementioned in Section 2.2. all the normalized specimen thicknesses. The values of
the SCG parametar, determined by a linear regres-
sion analysis of logs; versus logo based on Equa-

3. Experimental tion 3, weren =19.0+2.2, 199+ 2.4, 200+ 0.5 and

In order to compare the numerical solutions with ex-17.0+ 1.4, respectively, fofl =70, 40, 10 and 5 (or

perimental data, constant stress-rate flexural (“dynamigor p =2, 5, 39 and 98 N).

fatigue”) testing was conducted with soda-lime glass An additional numerical analysis using=19.0

microslides in distilled water at room temperature. Theshowed that there was no difference in SCG param-

glass microslides were used since this material exhibitgters  and1) between the infinite-bodyT(= co) and

asomewhat high SCG susceptibility® 20) inamoist  the finite-body T = 70) solutions. Therefore, the ex-

environment and since the microslides prOVide an ide%erimentaj data obtained from= 70 can be regarded

thin plate configuration with low cost. The nominal di- as those for the infinite-body condition, free from any

mensions of the glass microslides (No. 2954-F, Eriegffects on specimen thickness. Using Equations 2, 9 and

Scientific Co., Portsmouth, NH) werel.2mm by 25mm 12 together withn (:19)’ | and appropriate parameters

by 75 mm, respectively, in thickness, width and length for T = 70, the SCG parametérwas determined to be

Controlled-surface cracks were produced at the centef = 1.6 x 103 m/s. Now using the determinedl and

of each specimen using a Vickers microhardness inthe value ofl obtained numerically for each with

denter (Model 3212, Zwick, Germany) with one of the n = 19,0, one can predict from Equations 2, 9 and 12

indentation diagonals oriented along the direction of th&gjlure strength as a function of stress rate Tot 40,

prospective tensile stress of the specimen. Four differ{g and 5.

entindentation loads ranging from=2to 98 Nwere  The resulting prediction is shown in Fig. 6 with the

used. In order to avoid any complexity associated withyotted lines. The difference in between the experi-

the residual contact stresses produced by elastic/plastiiental data and the prediction<£ 19.0) was 5, 5, and
indentation deformation, all the as-indented specimens 1194, respectively, fof =40, 10 and 5; whereas,

were annealed at 52 in air for 20 h to remove the the respective difference in intercept was 2, 3, and

residual stresses. _ _ 2%. Although the experimental value of= 17.0 for
Constant stress-rate testing for the indented-and-anF — 5 js g little lower than the values aof=19-20

nealed specimens was carried outin an electromechanfor T > 10 resulting in a difference of about 10%, the
cal testing machine (Model 8562, Instron, Canton, MA)
using a stainless-steel, four-point flexure fixture with
20 mm-inner and 40 mm outer spans. Three to five g e
stroke rates in displacement control, ranging typically SODA-LIME GLASS
from 0.0005 to 50 mm/min, corresponding to stress— 200 1 (annealed) INERT |
rates from 22 x 102 to 220 MPa/s, were employed at & .
each indentation load. A total of four specimens were= 190 - 1
used at each test rate. This number of test specimen © 88 [
four at each test rate, was considered statistically sufZ= gg [ 40
ficient since the strength scatterdoefficient of varia- £ 4o |
tion) exhibited less than 5%. The inert strength foreactE s | 1°
indentation load was also determined using silicon oil & 5 e PREDICTION
at a fast stress rate of 220 MPa/s. 20 T mermnoay
From the indentation-fracture analysis [9] using
Kic =0.76 MPa/m and other known parameters [14],
the normalized specimen thickness (Equation 11) wa.
dEterml_ned to bé— ~ 70, 40, 10, and 5, reSpeCtlvely’ Figure 6 Results of constant stress-rate flexural testing for indented-
for the indentation loads oP =2, 5, 39 and 98 N. It ang-annealed soda-lime glass microslides with four different normal-
was observed that abov@ =98 N the indent cracks ized specimen thicknesses frdn=5 to 70 (corresponding indentation
tended to form more palmqvist or elliptical crack con- loads fromP = 2 to 98 N) in room-temperature distilled water. The solid
figurations (frequently with spalling) than semicircu- I?nes indicate the best-fi_t Iines_ based on Equation 3; whereas, the dotted
lar. so that the indent load & = 98 N was considered lines represent the predicted Ilne§ based on the dafafo70. Error bar
! . o representst one standard deviation (the error bars smaller than sym-
as a maximum load to produce semicircular surfacqs were omitted for clarity). The inert strengths were also plotted for
radial/median crack configurations. Therefore, it wascomparison.

10741072 1072107" 10° 10! 102 10° 10* 10°
STRESS RATE, & [MPa/s]
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overall agreement between the experimental data an8CG parameters. (Note that based on the indentation-
the prediction is reasonable within the range of experifracture analysis [10, 15], the initial as-indent crack size
mental scatters. Note that even the average coefficient alepends on indentation loaa):= 5§ P¥/? with § being a
variation inn for eachT was about 9%. In fact, the ob- constant. This gives a relation of= w/a; = w/§ P¥2.
tained values afi = 17 to 20 from this study withwide  Therefore, Equation 13 can also be expressed in terms
range of indentation loads frofA =2 to 98 N, agree of T by replacingP with T. The result using eitheP
well with those = 18-20) independently determined or T remains the same.)
for soda-lime glass using primarily lower indentation From the fracture surface examinations of specimens
loads P <10 N) by other investigators [10, 15, 16]. tested at lower stress rates with IGWs, it could be
Thus, the result shown in Fig. 6 indicates that no apprespeculated that the cracks seemed to have grown to el-
ciable difference in SCG parameters is evident betweeliptical configurations, in view of the propagation mode
the 2-D, finite-body numerical solution and the con-of the Wallner lines. However, in most cases, it was dif-
ventional, simple 1-D, infinite-body analytical solution ficult or impossible to identify the boundary of crack
(Equation 2). front at failure because of no clear demarcation be-
Alternatively but approximately, the effect of speci- tween slow crack growth and dynamic crack propaga-
men thicknessT) on SCG parameters can be examinedion (mirror/mist/hackle regions), as is typical of most
by constructing the universal failure strength-versus-glasses. The numerical calculations of crack configu-
stress rate relation based on the indentation-fractureations at failure showed that particularly at the low-
analysis [15]. Multiplying both sides of Equation 2 by est stress rate<2.2x 10~2 MPa/s), the aspect ratio
P1/3 and arranging the terms yield the following rela- (a/c) was significant about 0.60 and 0.45, respectively,
tionship for T =10 and 5, while the corresponding, respective
crack depth reached about 30 and 50% of the speci-
men thickness. The elliptical crack formation in flex-
ure has been observed more clearly for some ceramics
where « =[B(n + 1)(omPY/3)" =2+, which is  supjected to elevated-temperature, constant stress-rate
constant for a given material/environment system reflexural testing, because of well-defined demarcation
gardless of indentation load sinegP*/* is constant  of SCG region [17, 18]. The formation of a crack into

according to the indentation analysis [10, 15]. An equaellipticity in flexure also has been observed for metallic
tion similar to Equation 13 has been used for the asspecimens under cyclic fatiguing [19-21].

indented crack SyStem in which a residual stress field is Because of the limited experiments conducted in

present about the indent [15]. The resulting plots of logthis study using soda-lime glass microslides exhibiting
ot P13 as a function of logr P using the data in Fig. 6 n— 19withT = 5-70, the obtained numerical solutions
are depicted in Fig. 7. Each symbol represents a meay T = 2 and 3.3 wittn < 10 could not be verified with
value for a total of four specimens. The solid line repre-experiment. In fact, it is rarely feasible to find a ma-
sents a best-fit line with=19.0. As can be seen in the terial with n < 10 at ambient temperature since g|aSS,
figure, no appreciable trend for data at differentindentaynown most susceptible to slow crack growth, exhibits
tion loads to deviate from universal behavior is eVident.aS much ags &~ 20. A|th0ugh not Certairh an alternative
This indicates that the wide range of indentation loadso approach such extreme conditionsrof 10 with
from P = 2to 98 N which were used inthis study to pro- T < 5 would be to utilize ceramics atlevated tem-
duce the range of corresponding normalized specimeperatureswith an appropriate combination of mate-
thicknesses fron =70 to 5 resulted in no substantial rig|/thickness/test temperature under the condition that
effect of the specimen thickne$son the estimation of the material follows the power-law SCG, Equation 1.
The mostimportant conclusion drawn from this study is
thatin spite of the significant change in crack shape dur-

o1 P2 = o[ PO+ D (13)

Figure 7 Strength parameter (log: PY/3) as a function of stress-rate
parameter (log P) for four T's obtained from the experimental data in

STRESS-RATE PARAMETER, ¢P [MPa/s N]

Fig. 6. The solid line represents the best-fit line with: 19.

3 ing slow crack growth in flexure, the conventional sim-
“y 400 —ooa v oase w T ple, one-dimensional infinite-body analytical solution
a;l 300 | ANNEALED:RT WATER (Equation 2 or 3) can be used with areasonable accuracy
= to determine SCG parameters for finite thin specimens:
S o0 Realistically (experimentally) fan > 20 andT > 5 and
Fay .
= n=to & analytically forn > 10 andT > 3.3.
o) \2
5] oo
E Jay = o]
100 | -

Z 90 /"ﬂ/{ .

= B0} oantre 5] 5. Conclusions

A ég i - }‘Z;SQNET;]O)): The effect of specimen thickness on the estimation
& 2o | v P= 5N(T=40) | of SCG parameters of brittle materials subjected to
2w L o constant stress-rate flexural testing was determined
E 10-*10-210~" 10° 10" 102 103 10¢ 10° by using a two-dimensional numerical solution. The

numerical solution showed that the change in crack
shape at failure was significant, forming considerable
elliptical crack configurations particularly at both low
stress rate and low. Notwithstanding the significant
change in crack shape together with appreciable crack

3881



growth, the difference in SCG parameters between th®uring slow crack growth botla andc are changing

two-dimensional numerical solution and the conven-with time, hencey is a very complex function of time

tional, one-dimensional infinite-body analytical solu- so that the only solution of slow crack growth is to

tion was negligible with a maximum error of about 5% use a numerical analysis on the basis of the governing

for T > 3.3 (the initial crack size is less than 30% of differential equations.

the specimen thickness) witt> 10. The experimental

data obtained from constant stress-rate flexural testing
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For the function H
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where

w

Hy=1— (1.22+ o.12§> (3)
(o] w
0.75 15 2
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C C w

a a
p=02+=+06—
C w
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w C

For the function Q

1.65
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w w

where
113— 0.09(§>
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ol )

The crack geometry factoy, Equation 5, is ex-
pressed

(A2)

M1
M, = —0.54+

Mz =0.5

g:

Y = (A4)
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